$$
\begin{aligned}
& \hat{p}_{m}=\frac{109}{385}=28-15 \\
& \hat{P_{w}}=\frac{103}{449}=.23 \quad P_{\omega}=1 . \quad \text { "women" " } \\
& \hat{P}_{c}=\frac{212}{834}=.25 \quad H 0: P_{m}=P_{\omega} \\
& H_{a}: P_{m}>P_{w} \quad n_{1} \hat{P}_{c} \geq 5 \\
& z=\frac{.28-.23}{385(.25) \geq 5 \quad 449>_{385}} \\
& \sqrt{.25(1-.25)\left(\frac{1}{385}+\frac{1}{449}\right)}=1.78
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\text { independent }}{\text { random sample of }} \\
& \operatorname{Pr}(z>1.78)=.0378=p \text {-value (men would woman independent } \\
& \begin{array}{l}
\text { If Interpret p-value: } \\
0 \text { If prop. of men } 2 \text { women that agree are }=1
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 23 \pm 1.96 \sqrt{\frac{.23(1.23)}{4(19}} \\
& (.28-.23) \pm 1.96 \sqrt{\frac{.28(1-.28)}{385}+\frac{23(1-.23)}{449}} \\
& \underline{.05 \pm .0632} \\
& (-.0058, .1132) \\
& 385(.28) \geq 5 \quad 449(.23) \geq 5 \\
& 109 \geq 5 \quad 103 \geq 5 \\
& \begin{array}{rlrl}
385(1-.28) & \geq 5 & 449(1-23) & \geq 5 \\
276 & \geq 5 & 316 & \geq 5
\end{array} \\
& \text { 9590 conf the diff. in prop of mend women } \\
& \text { t hat will agree is any where from , 0058 } \\
& \text { less for men to. } 1132 \text { greater for men } \\
& \text { B Because os in the interval, than wo mo me ht }
\end{aligned}
$$

$P_{s}=$ prop. of all people that would agree to ban when a shed

Enough avid.

